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Singularities in the fluctuation of on-off intermittency
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For a two-dimensional piecewise linear map exhibiting on-off intermittency, the scaling property of fluctua-
tion, i.e., the large deviation property is investigated. It is shown that there are three phases of fluctuation and
the q-weighted average of an observed quantity has singularities such as jumps or a plateau due to transitions
between the phases. At the onset of on-off intermittency, the width of the plateau vanishes due to the disap-
pearance of one of the three phases and the singularity becomes weaker but more probable. The singularity at
the onset of on-off intermittency is also examined on the coupled logistic map.
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I. INTRODUCTION

On-off intermittency@1,2# and riddled basins@3# appear in
nonlinear dynamical systems with invariant subspac
where the dynamics restricted to the invariant subspac
chaotic. Due to the chaotic property of the dynamics in
invariant subspace, on-off intermittency and riddled bas
possess considerable complexity despite its simple struc
of the dynamics. In the present paper, we focus on on
intermittency that has been investigated in many respects
only in low-dimensional dynamical systems@4–8# but also
in continuously spatially extended systems@9#.

For an understanding of complex behavior in nonline
dynamical systems, the scaling property of fluctuation, wh
is formulated as thermodynamic formalism, is useful@10,11#.
For example, the nonhyperbolicity of chaotic attractor due
homoclinic tangency is characterized by the discontinuity
the q-weighted average of local expansion rate@12#. The
structure of riddled basin is characterized by a multifrac
spectrum@13#. On-off intermittency is also characterized b
its scaling property of fluctuation. The large deviation pro
erty, one of the scaling property of fluctuation, of on-o
intermittency is investigated for the distance from the inva
ant subspace with a multiplicative noise model@5# and for
the portion of time spent in the laminar phase with a pie
wise linear map@8#. It is demonstrated that there appears
singularity in theq-weighted average of the observed qua
tity. The common feature of the above two models is
existence of underlying random walks, which is conside
to be the origin of the observed singularity. This is sugges
by the fact@14# that inhomogeneous random walks gener
singularities in their thermodynamic structure functions. O
purpose in the present paper is to clearly demonstrate si
larities in the fluctuation of on-off intermittency for piece
wise linear maps by considering a set of observed variab

In Sec. II, we introduce two piecewise linear maps th
exhibit on-off intermittency. In Sec. III, we calculate th
thermodynamic structure functions and show that there
pear two types of singularities. A summary and conclud
remarks concerning the nonhyperbolicity due to underly
random walks of on-off intermittency are given in Sec. IV
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II. PIECEWISE LINEAR MODELS OF ON-OFF
INTERMITTENCY

We consider two-dimensional piecewise linear maps
the form

xn115F~xn!, yn115G~xn ,yn!, ~1!

whereG(x,0)50 and thusy50 is the invariant subspace
Assume that the restricted dynamicsxn115F(xn) to the in-
variant subspace is chaotic. If the transverse Lyapunov ex
nent

lim
N→`

~1/N! (
n50

N21

lnu]G~xn,0!/]yu ~2!

along an orbit on the invariant subspace converges and is
than zero, then the invariant subspace is transversally st
with respect to this orbit. If we have such an orbit wi
negative transverse Lyapunov exponent and the orbit is
sociated with the natural invariant measure ofxn115F(xn),
then the invariant subspace contains an attractor in Milno
sense@15#. On-off intermittency@1,2,6# is observed, if the
following conditions are satisfied:~a! the invariant subspace
contains no attractor,~b! there are orbits on the invarian
subspace having negative transverse Lyapunov expon
and~c! there is a global mechanism of reinjection. Note th
the second condition enables the invariant subspace so
what ‘‘attracting.’’

As a tractable model exhibiting on-off intermittency@7#,
we introduce the following simplified two-dimensiona
piecewise linear map:

xn115F~xn!5H xn /a if 0<xn<a

~12xn!/~12a! if a,xn<1,
~3!

yn115G~xn ,yn!5H yn /b if 0<xn<a,0<yn<b

byn if a,xn<1

yn if 0<xn<a,b,yn<1,
~4!
©2002 The American Physical Society17-1
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TAKEHIKO HORITA AND HIROMICHI SUETANI PHYSICAL REVIEW E 65 056217
where 1/2,a,1 and 0,b,1 are constants. And we als
consider another model@8# by replacing the dynamics iny
with

yn115G~xn ,yn!5H yn /b if 0<xn<a,0<yn<b

byn if a,xn<1,0<yn<b

~12yn!/~12b! if b,yn<1,
~5!

which is referred to as the model II while the first model
referred to as the model I in the following.

The natural invariant measure for the asymmetric trian
lar map xn115F(xn) of Eq. ~3! is the Lebesgue measur
@16#. Since

]G~x,0!/]y5H b21 if 0<x<a

b if a,x<1,
~6!

if a.1/2, the condition~a! is satisfied anda5a0[1/210 is
the onset point of on-off intermittency. The condition~b! is
also satisfied, sincexn115F(xn) has a set of initial condi-
tions x0 such that the orbit$xn% spends longer time in the
interval @0,a# than in the interval@a,1#. The condition~c! is
satisfied as well. Let us consider a partition of the ph
space@0,1#3@0,1# into rectangles

Rj[@0,1#3@bj 11,bj #, j 50,1,2, . . . . ~7!

With this phase space partition, a symbolic dynamics can
considered, where the graphs of possible symbol sequ
have similar structures with random walks as shown in F
1. More precisely, the rectangleRjùRa(a50,1,j
50,1,2, . . . ), where R0[@0,a#3@0,1# and R1[@a,1#
3@0,1#, is linearly mapped to

R0 if a5 j 50,

Rj 12a21 otherwise, ~8!

and

øk50
` Rk if j 50,

Rj 12a21 otherwise, ~9!

in the models I and II, respectively.

FIG. 1. Graphs of possible symbol sequence for the models~a!
I and ~b! II.
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III. LARGE DEVIATION PROPERTIES

In this section, we investigate large deviation propert
@17# of on-off intermittency by introducing a set of observe
variables and generalize the result shown in the previ
paper@8#, where only a certain variable is observed.

Let us consider a quantityu(X) defined at each phas
space pointX. Its finite time average overn steps is

un~X![~1/n! (
k50

n21

u„Tk~X!…, ~10!

whereTk denoteskth iterate of the mapT. Then the large
deviation property@10,11# is characterized by

^d„u2un~X!…&;exp@2nS~u!# ~11!

for large n with the fluctuation spectrumS(u), where
^G(X)& denotes the average with respect to the natural
variant measure. Note thatS(u) is a concave function taking
its minimum value 0 atu5^u(X)&. The thermodynamic
structure functions associated withu(X) are introduced by

f~q![ lim
n→`

~1/n!ln^enqun(X)& ~12!

and

u~q![df~q!/dq5 lim
n→`

^un~X!enqun(X)&/^enqun(X)&,

~13!

where2`,q,`. The fluctuation spectrumS(u) is related
to f(q) with the Legendre transformation

S~u!5max
q

$qu2f~q!%. ~14!

In the following, we consider

u~x,y![H u0 if 0<x,a,b,y<1

u1 if 0<x,a,0<y<b

u2 if a<x<1,

~15!

for the model I and

u~x,y![H u0 if b,y<1

u1 if 0<x,a,0<y<b

u2 if a<x<1,0<y<b,

~16!

for the model II, whereu0 , u1 , andu2 are constants. Note
that a set of observed variablesu can be considered by takin
several values ofu0 , u1 , and u2 and that the transvers
expansion rateu(x,y)5 lnu]G(x,y)/]yu can be considered
with an appropriate choice of the values ofu0 ,u1 , andu2 .
7-2
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Now we are interested in

Mq~n![^enqun(X)& ~17!

5E dXr~X!expFq(
k50

n21

u„Tk~X!…G ~18!

5E dX@Hequ(x)#nr~X!, ~19!

wherer(X) denotes the natural invariant density andH de-
notes the Frobenius-Perron operatorHG(X)[*dYd@X
2T(Y)#G(Y) @11#. Let us introduce

Ea~X![H 1 if XPRa

0 otherwise
~20!

and

Ej~X![H 1 if XPRj

0 otherwise
~21!

(a50,1,j 50,1,2, . . . ), then, in the present models, the lin
ear space spanned by$Ea(X)Ej (X)% is mapped to the linea
space spanned by$Ej (X)% under the operation of the
Frobenius-Perron operatorH and r(X), which is a fixed
point of H, can be found in the linear space spanned
$Ej (X)%. Moreover, if we are considering piecewise const
u(X) in eachRaùRj such thatu(X)5(a, juj

aEa(X)Ej (X),
which is the case in Eqs.~16! and~15!, then the operation o
Hequ(X) in the linear space spanned by$Ej (X)% is expressed
with an infinite-dimensional matrix as follows:

Hequ(X)Ej~X!5Hequ(X)
„E0~X!1E1~X!…Ej~X! ~22!

5H„equj
0
E0~X!1equj

1
E1~X!…Ej~X! ~23!

5(
i 50

`

~Pi j
0 equj

0
1Pi j

1 equj
1
!ei~X!E dYEj~Y!,

~24!

with ei(X)[Ei(X)/*dYEi(Y) and

Pi j
0 [a~d i ,0d j ,01d i 11,j !, ~25!

Pi j
1 [a8d i 21,j , ~26!

for the model I and

Pi j
0 [b821bid j ,01ad i 11,j , ~27!

Pi j
1 [a8d i 21,j~12d j ,0!, ~28!

for the model II, wherea8[12a and b8[12b. Thus, by

introducing a matrix@Pq# i j [Pi j
0 equj

0
1Pi j

1 equj
1
, we obtain

Mn~q!5E dX (
i , j 50

`

@Pq
n# i j pjei~X!5 (

i , j 50

`

@Pq
n# i j pj ,

~29!
05621
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where pj[*dXr(X)Ej (X). Note that, atq50, @Pq# i j is
identified as the transition probability from the statej to the
state i of an infinite Markov chain andpi , which satisfies
pi5( j 50

` @P0# i j pj and( i 50
` pi51, is obtained as

pi5~a2a8!a21~a8/a! i ~30!

for the model I and

pi5H ~a2a8!b8/~122a8b8! if i 50

p0b~a82ab!21$~a8/a! i2bi% if i>1
~31!

for the model II. Note also that, forj .0, in both models,
@P0# i j 5ad i 11,j1a8d i 21,j , which represents random walk
as shown in Fig. 1 and@Pq# i j 5aequ1d i 11,j1a8equ2d i 21,j
with u(X) of Eqs.~16! and ~15!.

By evaluating Eq.~29! for large n, we obtainf(q) as
Mn(q);enf(q). Equation~29! is rewritten as

Mn~q!5 (
$ i 0 ,i 1 , . . . ,i n%

@Pq# i ni n21
@Pq# i n21i n22

•••@Pq# i 1i 0
pi 0

,

~32!

where the summation is taken over all the possible pa
$ i 0 ,i 1 , . . . ,i n% with length n of the Markov chain. For a
fixed m.0, the possible paths are divided into two grou
Sn

(m) andSn
(m) according to whether all thei 0 ,i 1 , . . . ,i n are

less thanm or not. The contribution from the bounded pat
Sn

(m) is

Mn
(m)~q!5 (

$ i 0 ,i 1 , . . . ,i n%PSn
(m)

@Pq# i ni n21

3@Pq# i n21i n22
•••@Pq# i 1i 0

pi 0
~33!

5 (
i , j 50

m21

@~Pq
(m)!n# i j pj;~lq

(m)!n,

~34!

where Pq
(m) denotes them3m matrix defined by@Pq

(m)# i j

5@Pq# i j (0< i , j ,m) andlq
(m) is the largest real eigenvalu

of Pq
(m) . In another way, the possible paths are divided in

two groups Sn
0 and Sn

0 according to whether all the
i 0 ,i 1 , . . . ,i n are greater than 0 or not. If a path is inSn

0 , then
the path is equivalent to a path of random walks as m
tioned above. The contribution from the random walk pa
Sn

0 is denoted by

Zn~q![ (
$ i 0 ,i 1 , . . . ,i n%PSn

0
@Pq# i ni n21

3@Pq# i n21i n22
•••@Pq# i 1i 0

pi 0
. ~35!

It is apparent thatSn
0ùSn

(m)Þf for any m.0. Since we can
take an arbitrarily large value ofm, the paths that repeatedl
visit the state 0 are considered to be included inSn

(m) . Thus
the paths that are not included in bothSn

(m) andSn
0 and which

we need to take into account are the paths$ i 0 ,i 1 , . . . ,i n%
7-3
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such that $ i 0 ,i 1 , . . . ,i l%PSl
(m) and $ i l ,i l 11 , . . . ,i n%

PSn2 l 11
0 with a smalll compared withn, so that the expo-

nential dependence ofMn(q) on n is obtained by evaluating
the sum ofMn

(m)(q) with m→` andZn(q).
As shown in Appendix C,Zn(q) is evaluated asZn(q)

;enq(u11u2)/2(lq8)
n. Thus we conclude that

ef(q)5eq(u11u2)/2max$lq ,lq8%, ~36!

wherelq denotese2q(u11u2)/2lq
(`) .

As shown in Appendixes A and B,lq is obtained as a
function l(h) of h[eq(u11u222u0)/2 for the model I and as
a functionl(h,z) of h and z[e2q(u12u2)/2 for the model
II. The minimum value ofl is 2Aaa8, which corresponds to
the band edge of the continuous eigenvalue
e2q(u11u2)/2Pq and the first derivative ofl continuously
vanishes ath5Aa/a8 and 2Aaa8(12bz21Aa/a8)5b8h21

for the models I and II, respectively, where the discrete r
eigenvalue disappears. As shown in Appendix C,lq8 is ob-

FIG. 2. Functionsl andl8 of h andz for the model I witha
50.6. Bothl andl8 reach the same minimum value 2Aaa8 tan-
gentially.

FIG. 3. Functionsl andl8 of h andz for the model II with~a!
a50.6 andb50.4 and~b! a50.7 andb50.6. Bothl andl8 reach
the same minimum value 2Aaa8 tangentially.
05621
f

l

tained as a functionl8(z) of z, which has the same minimum
value 2Aaa8 as that ofl. Note thatl andl8 do not depend
on b in the model I.

In Figs. 2 and 3,l andl8 are plotted againstz andh for
the models I and II. In Figs. 4 and 5, three phasesD, R, and
B introduced according to the relative magnitudes ofl and
l8 are shown on theh-z plane. In the phaseD the discrete

FIG. 4. Phase diagram on theh-z plane for the model I with
a50.6 corresponding to Fig. 2. The symbolsD, R, andB denote the
discrete eigenvalue, the contribution from random walks, and
band edge of continuous eigenvalue, respectively.

FIG. 5. Phase diagrams on theh-z plane for the model II with
~a! a50.6 andb50.4 and~b! a50.7 andb50.6, corresponding to
Fig. 3. The symbolsD, R, andB denote the discrete eigenvalue, th
contribution from random walks, and the band edge of continu
eigenvalue, respectively. Ifb.a8/a, R does not exist forz,1. The
dotted lines 1, 2, and 3 in~a! showh5e2q cosw andz5e2q sin w for
2`,q,` with w50.05p, 0.38p, and 0.7p, respectively.
7-4
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eigenvalue is dominant, i.e.,l.l8.2Aa/a8, in the phaseR
the contribution from random walks is dominant, i.e.,l8
.l.2Aa/a8, and in the phaseB the band edge is dominan
i.e.,l85l52Aa/a8. By comparing the magnitudes ofl and
l8, we obtain the boundary between the phasesD andR as

h5~a/a8!z21 ~z.Aa/a8! ~37!

and

h5~a/a8!z~z,Aa8/a! ~38!

for the model I and
05621
h5
a8b8z

~a8z1az21!~a8z2abz21!
~z.Aa/a8! ~39!

and, if b,a8/a,

h5
a8b8

~a82ab!~az1a8z21!
~z,Aa8/a! ~40!

for the model II.
Let us fix the values ofu0 and u6 , then @ ln h5q(u1

1u222u0)/2,lnz52q(u12u2)/2# for 2`,q,` is a
straight line passing through the origin on the lnh-ln z plane.
By Eq. ~36!, a change of phases along the line on t
FIG. 6. Theq-weighted averageu(q) and the fluctuation spectrumS(u) for the model II witha50.6 andb50.4. Corresponding to the
three dotted lines 1, 2, and 3 in Fig. 5~a!, the values ofu05cosw andu152u25sinw are set in three ways:w50.05p for ~a! and ~b!,
0.38p for ~c! and~d!, and 0.7p for ~e! and~f!. A plateau, a plateau and a jump, and two jumps are observed in~a!, ~c!, and~e!, respectively.
7-5
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TAKEHIKO HORITA AND HIROMICHI SUETANI PHYSICAL REVIEW E 65 056217
ln h-ln z plane brings about a singularity inf(q) at the cor-
responding value ofq. At the boundary betweenD and R
denoted by a solid line in Figs. 4 and 5,u(q)5df(q)/dq
exhibits a jump. In the phaseC, u(q) is a constant since
du(q)/dq50 and, at its boundary denoted by a dashed l
in Figs. 4 and 5, the slopedu(q)/dq of u(q) exhibits a jump.
For example, in Fig. 6,u(q) and S(u) are plotted for the
three sets of values ofu0 andu6 expressed asu05cosw and
u152u25sinw with w50.05p, 0.38p, and 0.7p corre-
sponding to the three dotted lines in Fig. 5~a!. Figures 6~a!
and 6~b! are for the dotted line 1, whereu(q) has a plateau
that corresponds to a salient point ofS(u). Figures 6~c! and
6~d! are for the dotted line 2, whereu(q) has a plateau and
jump that correspond to a salient point ofS(u) and a linear
slope ofS(u), respectively. Figures 6~e! and 6~f! are for the
dotted line 3, whereu(q) has two jumps that correspond
two linear slopes inS(u).

In the previous paper@8#, the model II withu051 and
u15u250 is considered, where only the singularity at t
boundary betweenD and B is observed or no singularity i
observed according to whetherb,a8/a or not. Note that, as
it is understood from Figs. 4 and 5, if lnz[0, i.e., u1

5u2 , there appears only the singularity at the bound
betweenD and B, which implies a constant value ofu(q)
over a semi-infinite interval ofq. Here, for systems exhibit
ing on-off intermittency, we conjecture that if the observ
quantityu(X) is independent of the direction of motion from
or to the invariant subspace as for the present models

FIG. 7. Phase diagrams on theh-z plane for~a! the model I with
a5a0 and ~b! the model II witha5a0 andb50.6 at the onset of
on-off intermittency. In both models, at the origin the first deriv
tives of bothl andl8 vanish.
05621
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u15u2 , then the only possible singularity inu(q) due to
on-off intermittency is a plateau over a semi-infinite interv
of q. Indeed, this is also supported by the result of on-
intermittency on the multiplicative noise model@5#, where
u(X)5r 2 andr 4 are considered, withr corresponding to the
distance from the invariant subspace.

Now let us consider the fluctuation of transverse exp
sion rate lnu]G/]yu, i.e.,u050 andu152u25 ln b21 for the
model I and u05 ln b821 and u152u25 ln b21 for the
model II. In the case of the model I, by considering t
vertical line (lnh50,lnz5qln b) with 2`,q,` in Fig. 4,
it is confirmed that there are two jumps inu(q) and corre-
sponding two linear slopes inS(u) for a.a051/210. At
the onset of on-off intermittencya5a0, there appears no
singularity since Fig. 4 converges to Fig. 7~a! in the limit of
a→a0. On the other hand, in the case of the model II,
variety of behaviors as in Fig. 6 is observed depending
the values ofa andb as shown in Fig. 8, where ‘‘c’’ denotes
a plateau inu(q), ‘‘ d’’ denotes a jump inu(q), and ‘‘c-d’’
and ‘‘d-d’’ denote their combinations. In the limit ofa
→a0, Fig. 5~b! converges to Fig. 7~b! and thusu(q) exhibits
a discontinuous change of its slopedu(q)/dq at q50, as
shown in Fig. 9. Corresponding to the singularity inu(q) at
q50, the curvature ofS(u) shows a jump at the minimum o
S(u). Moreover, ifb.1/2, a jump inu(q) and a linear slope
in S(u) are also observed ata5a0. In this way, at the onse
of on-off intermittency, the degree of singularity is weaken
but it becomes more probable in the sense that it appea
the minimum ofS(u). This singularity at the onset of on-of
intermittency can be formulated by considering condition
variances ofnun(X). Let us introduce the conditional vari
ancess1

„nun(X)… ands2
„nun(X)… as

s1
„G~X!…[^s„G~X!2^G~X!&…& ~41!

ands2
„G(X)…[s1

„2G(X)… with

s~x![H x2 if x.0

0 otherwise.
~42!

For n@1, Eq. ~11! leads to

FIG. 8. Phase diagram of singularities observed in
q-weighted average of the transverse expansion rate for the m
II. The symbolsc and d denote a plateau and a jump inu(q),
respectively. The onset of on-off intermittency is ata5a051/2
10.
7-6
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FIG. 9. Theq-weighted averageu(q) and the fluctuation spectrumS(u) of the transverse expansion rate for the model II with~a! b
50.4 and~b! b50.6 at the onset of on-off intermittency.
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s1
„nuu~X!…;

E
ū

umax
~nu!2e2nS(u)du

E
umin

umax
e2nS(u)du

~43!

;nk1
23/2/~k2

21/21k1
21/2! ~44!

and

s2
„nuu~X!…;nk2

23/2/~k2
21/21k1

21/2!, ~45!

where, umin[u(q52`), umax[u(q5`), ū[u(q50)
5^u(X)&, k6[d2S(ū60)/du2, and S(u) is expanded
around its minimum atū. Thus, if k2Þk1 , we have differ-
ent limiting values ofs1

„nun(X)…/n ands2
„nun(X)…/n.

In Fig. 10,s1
„nun(X)… ands2

„nun(X)… are plotted for
the coupled logistic map

xn115 f ~xn!1
12e2a

2
@ f ~yn!2 f ~xn!#, ~46!

yn115 f ~yn!1
12e2a

2
@ f ~xn!2 f ~yn!#, ~47!

with f (x)[3.8x(12x), whereu(X)[(x1y)/2 is observed
and the parameter value is set in two ways nearly at the o
05621
et

of on-off intermittencya50.4321 and out of on-off intermit-
tencya50.1. Figure 10 confirms the singularityk1Þk2 at
the onset of on-off intermittency. As in Figs. 4 and 5, on t
ln h-ln z plane, the origin lnh5ln z50, which corresponds to
q50 and the minimum ofS(u) is always inD except at the
onset of on-off intermittency indicating that the singulariti
aroundq50 and the minimum ofS(u) can appear only a
the onset of on-off intermittency. Note that as it is und
stood from Fig. 7 it is possible to choose an observed qu
tity u(X) in such a way that, at the onset of on-off interm
tency, the corresponding line on the lnh-ln z plane lies inR,

FIG. 10. Conditional variancess1
„nun(X)… and s2

„nun(X)…
for the coupled logistic map witha50.432 ~upper two lines! and
0.1 ~lower two lines!. For a50.432, the difference of the slopes o
s1

„nun(X)… ands2
„nun(X)… confirms the discontinuity of the cur

vature ofS(u) at the minimum at the onset of on-off intermittenc
The average is taken along an orbit of length 107.
7-7
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except its origin, and no singularity inu(q) appears. With
such a choice ofu(X) near the onset of on-off intermittency
there appear two jumps inu(q), which disappear at the onse
of on-off intermittency.

IV. CONCLUDING REMARKS

Singularities in the fluctuation of on-off intermittency a
investigated on two-dimensional piecewise linear maps.
shown that there appear three phases of motion and by
crossover between the phases there appear singulariti
f(q) and correspondingly inu(q) andS(u). Theq-weighted
averageu(q) exhibits two types of singularities, a jump an
a plateau. As the system approaches the onset of on-of
termittency, the width of plateau inu(q) shrinks to zero, if it
exists, and its position converges atq50. In this way, at the
onset of on-off intermittency, a jump in the slopedu(q)/dq
of u(q) at q50 appears. The singularity at the onset
on-off intermittency is also confirmed for the coupled log
tic map by introducing conditional variances.

In nonhyperbolic systems with homoclinic tangencies,
fluctuation of expansion rate exhibits a singularity that a
pears as a linear slope inS(u) @12#. The singularities ob-
served here are also related to nonhyperbolicity. In the m
els I and II, the tangent space atX is expressed as a direc
sumEx(X) % Ey(X) of the one-dimensional linear subspac
Ex(X) andEy(X) alongx andy directions, respectively, eac
of which is invariant under the tangent map, i.
DT„Ex(X)…5Ex

„T(X)… and DT„Ey(X)„5Ey(T(X)…. The
stability in Ey(X) alternates between stable and unstable
pending onX within the attractor while it is always unstab
05621
is
he
in

in-

f

e
-

d-

,

-

in Ex(X), i.e., the system posseses nonhyperbolicity ca
unstable dimension variability@18#. In contrast with unstable
dimension variability, homoclinic tangencies are poin
where the unstable and stable tangent spaces degenerate
that their direct sum does not coincide with the full tange
space. In the present systems, unstable dimension variab
is due to the fact that there are infinitely many paths each
which has infinite length and negative transverse Lyapu
exponent as well as infinitely many paths with positi
Lyapunov exponents. Indeed, if the Markov chain shown
Fig. 1 is truncated into a finite Markov chain, then all th
paths with infinite length have only positive transver
Lyapunov exponents and, moreover, only the discrete eig
values ofPq are possible, which implies that no singulari
appears inf(q). In this sense, the singularities observ
here are considered to be due to nonhyperbolicity of on
intermittency.

We conjecture that, for systems exhibiting on-off interm
tency, the fluctuation has singularities due to nonhyperbo
ity of unstable dimension variability. Finally, it should b
noted that long-term numerical calculations on systems
hibiting on-off intermittency may require much care due
unstable dimension variability, which implies a breakdow
of shadowing@19#. Both numerical and theoretical investiga
tions on general systems are the subjects of future work
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APPENDIX A: DISCRETE EIGENVALUES

In this appendix, the largest discrete eigenvalue ofe2q(u11u2)/2Pq is considered.
For the model I, the truncatedm3m matrix Pq

(m) reads

Pq
(m)5S aequ0 aequ1

a8equ2 0 aequ1 0

a8equ2 0 �

a8equ2
� aequ1

0 � 0 aequ1

a8equ2 0

D ~A1!

5eq(u11u2)/2S ah21 az21

a8z 0 az21 0

a8z 0 �

a8z � az21

0 � 0 az21

a8z 0

D , ~A2!
7-8
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wherez[e2q(u12u2)/2 andh[eq(u11u222u0)/2. Let us find
l andv satisfying tvPq

(m)5eq(u11u2)/2l tv, i.e.,

lv15ah21v11a8zv2 , ~A3!

lv i5az21v i 211a8zv i 11 , i 52,3, . . . ,m21, ~A4!

lvm5az21vm21 . ~A5!

With

m6[
l6Al224aa8

2a8
~A6!

and constantsc1 andc2 , Eq. ~A4! can be expressed as

v i5~c1m1
i 211c2m2

i 21!z2 i . ~A7!

With Eq. ~A7!, Eqs.~A3! and ~A5! become

c1~ah211a8m12l!1c2~ah211a8m22l!50
~A8!

and

c1~a2lm1!1c2~m2 /m1!m22~a2lm2!50, ~A9!

respectively. Thus,
05621
c2~m2 /m1!m22~a2lm2!~ah211a8m12l!

5c2~a2lm1!~ah211a8m22l!. ~A10!

If l.2Aaa8, thenm2 /m1,1 and with the limit ofm→`,
Eq. ~A10! leads to

l5ah211a8m2 , ~A11!

where the nonphysical solutiona2lm150, which means
c250, is abandoned. Equation~A6! is equivalent to

l5am2
211a8m2 , m2,Aa/a8 ~A12!

and, together with Eq.~A11!, this gives

m25h, ~A13!

if h,Aa/a8. Thus, if h,Aa/a8,

l5ah211a8h ~A14!

is the largest real eigenvalue ofe2q(u11u2)/2Pq for the
model I. If h,Aa/a8 is not satisfied, there is no eigenvalu
of e2q(u11u2)/2Pq greater than 2Aaa8.

For the model II, the truncatedm3m matrix Pq
(m) reads
Pq
(m)5S b8equ0 aequ1

b8bequ0 0 aequ1 0

b8b2equ0 a8equ2 0 �

b8b3equ0 a8equ2
� aequ1

A 0 � 0 aequ1

b8bm21equ0 a8equ2 0

D ~A15!

5eq(u11u2)/2S b8h21 az21

b8bh21 az21 0

b8b2h21 a8z 0 �

b8b3h21 a8z � az21

A 0 � 0 az21

b8bm21h21 a8z 0

D . ~A16!
In a similar way as for the model I, let us findl and v
satisfying tvPq

(m)5eq(u11u2)/2l tv, then Eq.~A3! is substi-
tuted by

lv15b8h21(
i 51

m

bi 21v i ~A17!

and Eq.~A8! is substituted by
c1S b8h21
12~m1bz21!m

12m1bz21
2l D

1c2S b8h21
12~m2bz21!m

12m2bz21
2l D 50. ~A18!

Thus, we obtain
7-9
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c2~m2 /m1!m22~a2lm2!S b8h21
12~m1bz21!m

12m1bz21
2l D

5c2~a2lm1!S b8h21
12~m2bz21!m

12m2bz21
2l D . ~A19!

If m2 is real andm2bz21,1, then, with the limit ofm
→`, Eq. ~A19! leads to

l5b8h21/~12m2bz21!, ~A20!

where the nonphysical solutiona2lm150, which means
c250, is abandoned. Equation~A20! together with Eq.
~A12! determine the largest real eigenvalue
e2q(u11u2)/2Pq for eachq, which exists if

2Aaa8~12bz21Aa/a8!,b8h21. ~A21!

If the condition~A21! is not satisfied, then there is no eige
value ofe2q(u11u2)/2Pq greater than 2Aaa8.

APPENDIX B: CONTINUOUS EIGENVALUES

In this appendix, the continuous eigenvalues
e2q(u11u2)/2Pq is considered. If22Aaa8,l,2Aaa8, with
a real uP@0,p#,m6 and l can be expressed asm6

5Aa/a8e6 iu andl52Aaa8cosu and, without loss of gen-
erality, we can setc65e6 ic with a realc. Equation~A5!
leads to

Re @eiceimu#50 ~B1!

and it is satisfied with

c1mu5
p

2
~mod p). ~B2!

Note that if u50, thenm15m2 ,c5p/2(mod p) by Eq.
~B2! with w(0)5p, andc11c250, which meansvm50,
thus u50 is not allowed. In the same reason,u5p is also
not allowed. Equations~A3! and~A17! are also converted to
the form of Re @eicg(u)#50, where

g~u!5Aah212Aa8e2 iu ~B3!

for the model I and

g~u!5b8h21
12~bz21Aa/a8!meimu

12bz21Aa/a8eiu
22Aaa8cosu

~B4!

for the model II, and, by eliminatingc by Eq. ~B2!, it leads
to

g~u!5mu~mod p), ~B5!

whereg(u)[arg$g(u)%. For the model I,g(u) is continuous
and

05g~0!5g~p!<g~u!,p/2 if h<Aa/a8
05621
f

f

05g~p!<g~u!<g~0!5p otherwise. ~B6!

Thus, for largem, there arem21 or m almost equally spaced
solutions of u over the interval (0,p). In the limit of m
→`, the solutionsu form an interval@0,p# and we have a
band @22Aaa8,2Aaa8# of continuous eigenvalues o
e2q(u11u2)/2Pq . For the model II, we consider the cas
bz21Aa/a8,1, otherwise the condition~A21! for the exis-
tence of the eigenvalue ofe2q(u11u2)/2Pq greater than
2Aaa8 is automatically satisfied. For largem, g(u), whose
dependence onm can be neglected, is continuous an
bounded, sinceg(u) converges to

b8h21

12bz21Aa/a8eiu
22Aaa8cosu ~B7!

with m→`. And g(p)50 andg(0)5p or 0 according to
whetherg(0)<0 or not, thus, similarly as for the model
we also have a band@22Aaa8,2Aaa8# of continuous eigen-
values ofe2q(u11u2)/2Pq for the model II.

APPENDIX C: EVALUATION OF Zn„q…

Each element ofSn
0 is a path of random walks with lengt

n, which never visit the state 0. Let us define

K~ l ,t ![H tC( l 1t)/2 if l 52t,2t12, . . . ,t22,t

0 otherwise,
~C1!

and let i , j .0. Then the number of the possible paths
lengthn from i to j is K( i 2 j ,n)2K( i 1 j ,n) by the reflec-
tion principle @20#. Our purpose is to evaluate

Zn~q!5(
i 51

`

pi (
j 51

`

~a8equ2!m~aequ1!n2m

3$K~ i 2 j ,n!2K~ i 1 j ,n!%, ~C2!

where m[(n1 j 2 i )/2 is the number of steps toward th
positive direction. Withv[Aa8/ae2q(u12u2)/2, Eq. ~C2!
reads

Zn~q!5enq(u11u2)/2~aa8!n/2(
i 51

`

pi (
j 51

`

v j 2 i

3$K~ i 2 j ,n!2K~ i 1 j ,n!%. ~C3!

Note thatpi}(a8/a) i and (a82ab)21$(a8/a) i2bi% for
the models I and II, respectively, and let us evaluate
7-10
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G~v,w,n![(
i 51

`

(
j 51

`

wiv j 2 i$K~ i 2 j ,n!2K~ i 1 j ,n!%

~C4!

5(
i 51

n

wi (
j 512 i

t

v lK~ j ,n!

1 (
i 5n11

`

wi (
j 52n

n

v jK~ j ,n!

2 (
i 51

n21

~w/v2! i (
j 5 i 11

n

v jK~ j ,n!, ~C5!

with 0,w,1. The second term of Eq.~C5! is

wn11~12w!21 (
m50

n

v2m2n
nCm5wn11~12w!21~v211v !n.

~C6!

By using Stirling’s formula, the first term of Eq.~C5! is
approximated by

n21/2E
0

1

dr0E
2r 0

1

drwnr0vnr

3expH 2nS 11r

2
ln

11r

2
1

12r

2
ln

12r

2 D J . ~C7!

Sincew,1, the maximum of the integrand is achieved a
point on $(r 0 ,r )ur 050,0<r<1%ø$(r 0 ,r )u0<r 052r<1%
and thus Eq.~C7! is evaluated as
a-

.

ys
l,
.

,
t.

.

A

05621
~v211v !n if v.1,

2n if w<v<1,

~v21w1vw21!n if v,w. ~C8!

Similarly, the third term of Eq.~C5! is evaluated and its
contribution can be neglected. Sincew,1, Eqs. ~C6! and
~C8! lead to

G~v,w,n!;H ~v211v !n if v.1

2n if w<v<1

~v21w1vw21!n if v,w.

~C9!

Thus, Eqs.~C3! and ~C9! lead to

lim
n→`

Zn~q!1/n

5H aequ11a8equ2 if aequ1,a8equ2

awequ11a8w21equ2 if awequ1.a8w21equ2

2Aaa8eq(u11u2)/2 otherwise,

~C10!

where w5a8/a and max$a8/a,b% for the models I and II,
respectively. Withz5e2q(u12u2)/2 and

lq8[H az211a8z if az21,a8z

awz211a8w21z if awz21.a8w21z

2Aaa8 otherwise,

~C11!

Eq. ~C10! is expressed asZn(q);enq(u11u2)/2(lq8)
n. Note

that the minimum value 2Aaa8 of lq8 coincides with the
band edge of the continuous eigenvalue ofe2q(u11u2)/2Pq
and the first derivative oflq8 continuously vanishes atz
5wAa/a8 andAa/a8 and equals to 0 between them.
or.
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